The lack of standardization is a prominent issue in magnetic resonance (MR) imaging. This often causes undesired contrast variations due to differences in hardware and acquisition parameters. In recent years, MR harmonization using image synthesis with disentanglement has been proposed to compensate for the undesired contrast variations. Despite the success of existing methods, we argue that three major improvements can be made. First, most existing methods are built upon the assumption that multi-contrast MR images of the same subject share the same anatomy. This assumption is questionable since different MR contrasts are specialized to highlight different anatomical features. Second, these methods often require a fixed set of MR contrasts for training (e.g., both Tw-weighted and T2-weighted images must be available), which limits their applicability. Third, existing methods generally are sensitive to imaging artifacts. In this paper, we present a novel approach, Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness (HACA3), to address these three issues. We first propose an anatomy fusion module that enables HACA3 to respect the anatomical differences between MR contrasts. HACA3 is also robust to imaging artifacts and can be trained and applied to any set of MR contrasts. Experiments show that HACA3 achieves state-of-the-art performance under multiple image quality metrics. We also demonstrate the applicability of HACA3 on downstream tasks with diverse MR datasets acquired from 21 sites with different field strengths, scanner platforms, and acquisition protocols.
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
我们介绍了一种引力波形反演策略,用于发现二元黑洞(BBH)系统的机械模型。我们表明,只需要单一的时间序列(可能嘈杂)波形数据来构造BBH系统的运动方程。从前馈神经网络参数化的一类通用微分方程开始,我们的策略涉及构建合理的机械模型的空间和该空间内的物理信息的受限优化,以最小化波形误差。我们将我们的方法应用于各种BBH系统,包括偏心和非偏心轨道的极端和可比的质量比系统。我们展示所得到的微分方程适用于时间持续时间长于训练间隔的时间,并且相对论效应,例如临床预防,辐射反应和轨道插入,被自动占。这里概述的方法提供了研究二元黑洞系统动态的新的数据驱动方法。
translated by 谷歌翻译
上印度河盆地喜马拉雅山为2.7亿人和无数的生态系统提供水。然而,在这一领域,降水是水文建模的关键组成部分。围绕这种不确定性的关键挑战来自整个盆地降水的复杂时空分布。在这项工作中,我们提出了具有结构化非平稳核的高斯过程,以模拟UIB中的降水模式。先前试图在印度库什karakoram喜马拉雅地区量化或建模降水的尝试通常是定性的,或者包括在较低分辨率下无法解决的粗略假设和简化。这项研究也几乎没有错误传播。我们用非平稳的Gibbs内核参数为输入依赖性长度尺度来解释降水的空间变化。这允许后函数样品适应印度河地区不同基础地形所固有的不同降水模式。输入依赖的长度尺寸由带有固定平方 - 指数内核的潜在高斯过程控制,以使功能级别的超参数平稳变化。在消融实验中,我们通过证明其对空间协方差,时间结构和关节时空重建的能力来激励所提出的内核的每个组成部分。我们通过固定的高斯工艺和深度高斯工艺进行基准测试模型。
translated by 谷歌翻译
我们可以通过观看数月或数年来了解一个场景?在长时间播放中录制的视频将在多个时间范围内描绘有趣的现象,但识别和观看它们带来了挑战。该视频太长了,无法完整观看,并且某些事件的实时体验太慢,例如冰川静修。及时视频是总结长视频和可视化慢时尺度的常见方法。但是,时间段仅限于单个选择的时间频率,并且由于框架之间的混叠和时间不连续性,通常会出现闪烁。在本文中,我们提出了视频时间金字塔,该技术可以解决这些局限性并扩大可视化时间流逝的可能性。受到计算机视觉的空间图像金字塔的启发,我们开发了一种在时间域中构建视频金字塔的算法。视频时间金字塔的每个级别都可以看到不同的时间表。例如,每月时间表的视频通常非常适合可视化季节性变化,而一分钟时间尺度的视频最适合可视化日出或云层在天空中的运动。为了帮助探索不同的金字塔水平,我们还提出了一个视频频谱图,以可视化整个金字塔的活动量,从而提供了场景动力学的整体概述,并能够在时间和时间表上探索和发现现象。为了展示我们的方法,我们已经从十个户外场景中构建了视频时间金字塔,每个户外场景都包含数月或数年的数据。我们将视频颞金字塔层与天真的时间解体进行了比较,并发现我们的金字塔可以无视长期变化的别名观看。我们还证明,视频谱图通过实现概述和以细节为中心的观点来促进跨金字塔水平的现象的探索和发现。
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
复发性神经网络已被证明是高能量物理中许多任务的有效体系结构,因此已被广泛采用。然而,由于在现场可编程门阵列(FPGAS)上实现经常性体系结构的困难,它们在低延迟环境中的使用受到了限制。在本文中,我们介绍了HLS4ML框架内两种类型的复发性神经网络层(长期短期内存和封闭式复发单元)的实现。我们证明,我们的实施能够为小型和大型模型生产有效的设计,并且可以定制以满足推理潜伏期和FPGA资源的特定设计要求。我们显示了多个神经网络的性能和合成设计,其中许多是专门针对CERN大型强子对撞机的喷气识别任务的培训。
translated by 谷歌翻译
从2D图像重建3D对象对于我们的大脑和机器学习算法都有挑战。为了支持此空间推理任务,有关对象整体形状的上下文信息至关重要。但是,此类信息不会通过既定的损失条款(例如骰子损失)捕获。我们建议通过在重建损失中包括多尺度拓扑特征,例如连接的组件,周期和空隙来补充几何形状信息。我们的方法使用立方复合物来计算3D体积数据的拓扑特征,并采用最佳传输距离来指导重建过程。这种拓扑感知的损失是完全可区分的,在计算上有效,并且可以添加到任何神经网络中。我们通过将损失纳入SHAPR来证明我们的损失的实用性,该模型用于根据2D显微镜图像预测单个细胞的3D细胞形状。使用利用单个对象的几何信息和拓扑信息来评估其形状的混合损失,我们发现拓扑信息大大提高了重建质量,从而突出了其从图像数据集中提取更多相关特征的能力。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译